Tipul aliajului	Nr.crt.	Fe	Mn	Si	Ni	Cr	Ti	Nb	Al	Ν	С	Obs.	Temperatura de turnare, ⁰ C	Nr. referință bibliografică
	1	Rest.	28-34	4-6,5	-	-	-	-	-	-	-	Interval general AMF ternare	-	[1]
	2	Rest.	28,3	6,83	0,03	0,02	-	-	0,009	-	0,013	Revenire retinută	-	[2]
	3	Rest.	29	6,9	0,01	5,0	-	-	0,007	-	0,018	Revenire reținută	-	
	4	Rest.	28	6	-	5	-	0,53	-	-	0.06	Pseudoelasticititate	-	[3]
	5	Rest	15	5	5	9	-	0,53	-	-	0,06	Efectul pre-	-	
	6	Rest	15	5	5	9	-	1,06	-	-	0,12	alungirii	-	
	7	Rest	15	5	5	9	-	1,59	-	-	0,18		-	[4]
	8	Rest	14	5	5	9	-	-	-	-	-	Aliaj inoxidabil convențional	-	
Dahari	9	Rest	28	6	-	5	-	-	-	-	-	Aligia tipiga"	-	[5]
Pe baza	10	Rest	15	5	5	9	-	-	-	-	-	Anaje "upice	-	[3]
de Fe- Mn-Si	11	Rest	16	5	4	9	-	-	-	-	-	Memorie termică și mecanică	-	[6]
	12	Rest	28	6	-	5	-	0,47	-	-	0,06	,	-	
	13	Rest	28	6	-	5	-	0,93	-	-	0,12	Îmbunătățirea	-	
	14	Rest	28	6	-	5	-	1,4	-	-	0,18	memoriei prin	-	[7]
	15	Rest	14	5	5	9	-	0,47	-	-	0,06	formarea de	-	
	16	Rest	14	5	5	9	-	0,93	-	-	0,12	nanoprecipitate		
	17	Rest	14	5	5	9	-	1,4	-	-	0,18		-	
	18	Rest	14,6	4,22	4,14	7,98	-	-	-	-	0,012	Proiectare compo-	-	[8]
	19	Rest	14,8	4,78	4,16	7,92	-	-	-	-	0,18	zitie Fe-Mn-Si-Cr-Ni	-	[0]
	20	Rest	15,2	5,01	4,2	8,14	-	-	-	-	0,12	Efectele C	-	[9]
	21	Rest	17,8	4,73	4,12	7,8	-	-	-	-	-	Efecte calire	-	[10]
Pe bază	1	Rest.	0	0	27-31	0	0	-	-	0	0.4-0,8	Reversie în	-	[11]
	2	Rest.	0	0	10	0	0	-	-	0	1.5	prezența carbonului	-	[12]
de Fe-	3	Rest.	0	0	25-33	0	4	-	-	0	-	(10-20) % Co	-	[13]
Ni-Si	4	Rest.	0	0	12-20	0	7,6- 8,2	-	-	-	-	(31-45) % Co	-	[14]
	5	Rest.	0	0	15	15	-	-	-	-	-	15 %Co	-	[15]

Tabel cu compozițiile chimice ale aliajelor și temperaturile de turnare corespunzătoare, recomandate de literatura de specialitate

Tipul aliajului	Nr.crt.	Fe	Mn	Si	Ni	Cr	Ti	Nb	Co	Ν	С	Obs.	Temperatura de turnare, ⁰ C	Nr. referință bibliografică
Pe bază de Fe- Ni-Si	6	Rest.	-	-	15-20	1-20	-	-	-	-	-		-	[15]
	7	Rest.	-	-	30,9- 31	-	-	4,6-6,8	-	-	-		-	[16]
	8	Rest.	2-4	-	22-26	-	-	-	-	-	-		-	[17]
	9	Rest.	-	6	28	-	-	-	10	-	-		-	[18]
	10	Rest.	-	6	28	-	-	-	-	-	-		-	[18]

Bibliografie

[1] Dubois, B. – Aciers à mémoire de forme. Espoir ou réalité?, Traitement thermique, 234, 1990, 27-34

[2] N. Van Caenegema, L. Duprez, K. Verbeken, D. Segers, Y. Houbaert, *Stresses related to the shape memory effect in Fe–Mn–Si-based shape memory alloys*, Materials Science and Engineering, doi:10.1016/j.msea.2007.02.159

[3] T Sawaguchi, T Kikuchi and S Kajiwara, *The pseudoelastic behavior of Fe–Mn–Si-based shape memory alloys containing Nb and C*, Smart Materials and Structures 14 (2005) S317–S322 doi:10.1088/0964-1726/14/5/022

[4] Z.Z. Dong, S. Kajiwara, T. Kikuchi, T. Sawaguchi, *Effect of pre-deformation at room temperature on shape memory properties of stainless type Fe–15Mn–5Si–9Cr–5Ni–(0.5–1.5)NbC alloys*, Acta Materialia 53 (2005) 4009–4018

[5] A. Baruj, T. Kikuchi, S. Kajiwara, N. Shinya, Improvement of shape memory properties of NbC containing Fe–Mn–Si based shape memory alloys by simple thermomechanical treatments, Materials Science and Engineering A 378 (2004) 333–336

[6] Nathalie Bergeon, Gérard Guenin, Claude Esnouf, Microstructural analysis of the stress-induced o martensite in a Fe–Mn–Si–Cr–Ni shape memory alloy Part II: Transformation reversibility, Materials Science and Engineering A242 (1998) 87–95

[7] S. Kajiwara, D. Liu, T. Kikuchi and N. Shinya, *Remarkable improvement of shape memory effect in Fe-Mn-Si based shape memory alloys by producing nbc precipitates*, Scripta materialia 44 (2001) 2809–2814

[8] Y.H. Wen, N. Li, L.R. Xiong, Composition design principles for Fe-Mn-Si-Cr-Ni based alloys with better shape memory effect and higher recovery stress, Materials Science and Engineering A 407 (2005) 31-35

[9] Y.H. Wen , W.L. Xie, N. Li, D. Li, Remarkable difference between effects of carbon contents on recovery strain and recovery stress in Fe-Mn-Si-Cr-Ni-C alloys, Materials Science and Engineering A 457 (2007) 334–337

[10] Yuhua Wen, Ning Li and Mingjing Tu, Effect of quenching temperature on recovery stress of Fe-18Mn-5Si-8Cr-4Ni alloy, Scripta materialia 44 (2001) 1113–1116

[11] Alexandru, I. – Contribuții privind influența tratamentului termic sub zero grade asupra oțelurilor înalt aliate și proprietăților lor de așchiere, **Teză de doctorat**, Institutul Politehnic Iași, 1980

[12] Girzhon, V.V. and Danilćenko, V.E. – *Decomposition of phase-hardened martensite in Fe-Ni-C alloy*, Scripta metall.mater., 32, 1995, No.1, 83-86

[13] Jost, N. – Shape memory effects in Fe-Ni-Co alloys, Progr.Shape Mem.All., (Eucken, S. ed.), DGM-Informationsgesellschaft Verlag, Bochum, 1992, 173-190

[14] Kokorin, V.V., Gunko, L.P. and Shevchenko, O.M. – *Martensitic transformation in ausaged Fe/Co based alloys*, Scripta metall.mater., 28, 1993, 35-40

[15] Brook, G.B., Iles, R.F. and Brooks, P.L. – *The relationship between stacking fault energy and shape memory in primary solid solutions,* **Shape Mem. Eff. All.**, (Perkins, J., ed.), Plenum Press, 1975, **477-486**

[16] Koval. Yu.N. and Monastirsky, G.E. – Reversible martensite transformation and shape memory effect in Fe-Ni-Nb alloys, Scripta metall.mater., 28, 1993, 41-46

[17] Chang, S.N. and Meyers, M.A. – Martensite transformation induced by a tensile stress pulse in Fe-22,5 wt. % Ni –4 wt. % Mn alloy, Acta metall., 36,1988, 1085-1098

[18] Y. Tanaka, Y. Himuro, T. Omori, Y. Sutou, R. Kainuma, K. Ishida, *Martensitic transformation and shape memory effect in ausaged Fe–Ni–Si–Co alloys*, Materials Science and Engineering A 438–440 (2006) 1030–1035

 $T_{turnare exper} = 1550^{\circ}C$

Reactivi Fe-Mn-Si-Cr-Ni

1.2% K₂S₂O₅ + 0.5% NH₄HF₂ in distilled water [6]

Tabel cu compozițiile chimice nominale ale aliajelor pe bază de Fe-Mn-Si și de Fe-Ni-Si, % m

Tipul aliajului	Numărul aliajului	Fe	Mn	Si	Ni	Cr	Ti	С	Obs.
Pe bază	1	Bal.	18	3	4	7	0.5	0.05	
de Fe-	2	Bal.	18	3	4	7	1.0	0.05	
Mn-Si	3	Bal.	18	3	4	7	1.5	0.05	
Pe bază	1	Bal.	0	2	28	0	0.2	0.05	
de Fe-	2	Bal.	0	2	28	0	0.5	0.05	
Ni-Si	3	Bal.	0	2	28	0	0.8	0.05	

Tabel cu principalele tipuri de creuzete și caracteristicile acestora

Caracterul chimic al creuzetului	Tipul creuzetului	Domenii de utilizare	Compoziția chimică, %m	Obs.
Acid	Sinterizate din masă de ștampare pe bază de SiO ₂	Elaborarea aliajelor feroase, fontă și oțeluri nealiate	99 % SiO ₂ , 1 % Acid boric	Nerecomandate pentru alierea cu mangan Refractaritate până la 1850 ⁰ C
Aciu	Sinterizate din masă de ștampare semiacidă	Elaborarea fontei și a aliajelot pe bază de aluminiu și cupru	65,24 % SiO ₂ ; 29,08 (Al ₂ O ₃ +TiO ₂); 0,92 % Fe ₂ O ₃ ; 0,61 % CaO; 0,72 % MgO; 2,.48 % alte elemente	Refractaritate până la 1650 ⁰ C
Bazic	Sinterizate din masă de ștampare pe bază de magnezită	Elaborarea oțelurilor înalt aliate, a aliajelor pe bază de nichel, crom și magneziu	 99% magnezită, cu granulația medie: sub 0,3 mm (25-50) %; (0,3-0,5) mm (20-30) % (0.5-1) mm (20-35) % (1-2) mm 10 % 	Recomandate pentru cuptoare cu arc electric și cu inducție
	Sinterizate din masă de ștampare pe bază de cromomagnezita	Elaborarea prealiajelor Cu-Cr, Cu-Fe, Cu-Ni, etc.	 99% cromomagnezită, cu granulația medie: sub 0,5 mm 10 %; (0,5-1) mm 40 % (1.5-2) mm 30 % (2-2,5) mm 20 % 	Rezistență la șoc termic
	ISO Universal Graphite	Elaborarea aliajelor pe bază de: cupru; zinc; aluminiu	Matrice pe bază de grafit	Producătorul (DIAMAT, Germania) nu precizează alte detalii
Neutru	ISO Universal Super Rapid Graphite	Elaborarea aliajelor pe bază de zinc	Matrice pe bază de carbură de siliciu, grafit și argilă	Producătorul (DIAMAT, Germania) nu precizează alte detalii
	ISO Rapid Graphite	Elaborarea aliajelor (semi)nobile pe bază de aur, argint, platină	Matrice pe bază de grafit	Producătorul (DIAMAT, Germania) nu precizează alte detalii
	Sinterizate din masă de ștampare pe bază de Al ₂ O ₃	Elaborarea aliajelor feroase, oțel înalt aliat cu crom, nichel și mangan	$\begin{array}{c} 27,5 \% \text{ SiO}_2; 68,96 \% \\ (Al_2O_3 + \text{TiO}_2); 0,59 \% \\ Fe_2O_3; 0,45 \% \text{ CaO}; \\ 0,05 \% \text{ MgO}; 2,62 \% \\ alte elemente \end{array}$	Refractaritate până la 1850 ⁰ C